
Learn Linux, 101: RPM and YUM package
management
Add new software and keep your system current

Skill Level: Intermediate

Ian Shields
Senior Programmer
IBM

11 May 2010

Learn how to install, upgrade and manage packages on your Linux® system. This
article focuses on the Red Hat Package Manager (RPM) developed by Red Hat, as
well as the Yellowdog Updater Modified (YUM) originally developed to manage Red
Hat Linux systems at Duke University's Physics department. You can use the
material in this article to study for the LPI 101 exam for Linux system administrator
certification, or just to explore the best ways to add new software and keep your
system current.

About this series
This series of articles helps you learn Linux system administration
tasks. You can also use the material in these articles to prepare for
Linux Professional Institute Certification level 1 (LPIC-1) exams.

See our developerWorks roadmap for LPIC-1 for a description of
and link to each article in this series. The roadmap is in progress
and reflects the latest (April 2009) objectives for the LPIC-1 exams:
as we complete articles, we add them to the roadmap. In the
meantime, though, you can find earlier versions of similar material,
supporting previous LPIC-1 objectives prior to April 2009, in our LPI
certification exam prep tutorials.

Overview

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 26

http://www.lpi.org
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-map/index.html
http://www.ibm.com/developerworks/linux/lpi/101.html
http://www.ibm.com/developerworks/linux/lpi/101.html
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

In this article, learn to use the RPM and YUM tools to manage the packages on your
Linux system. Learn to:

• Install, reinstall, upgrade, and remove packages using RPM and YUM

• Obtain information about RPM packages including version, status,
dependencies, integrity, and signatures

• Determine what files a package provides, as well as find which package a
specific file comes from.

This article helps you prepare for Objective 102.5 in Topic 102 of the Linux
Professional Institute's Junior Level Administration (LPIC-1) exam 101. The objective
has a weight of 3.

Prerequisites

To get the most from the articles in this series, you should have a basic knowledge
of Linux and a working Linux system on which you can practice the commands
covered in this article. Sometimes different versions of a program will format output
differently, so your results may not always look exactly like the listings and figures
shown here. In particular, much of the output we show is highly dependent on the
packages that are already installed on our systems. Your own output may be quite
different, although you should be able to recognize the important commonalities.

Introducing package management

Connect with Ian
Ian is one of our most popular and prolific authors. Browse all of
Ian's articles on developerWorks. Check out Ian's profile and
connect with him, other authors, and fellow readers in My
developerWorks.

In the past, many Linux programs were distributed as source code, which a user
would build into the required program or set of programs, along with the required
man pages, configuration files, and so on. Nowadays, most Linux distributors use
prebuilt programs or sets of programs called packages, which ship ready for
installation on that distribution. In this article, you will learn about package
management tools that help you install, update, and remove packages. This article
focuses on the Red Hat Package Manager (RPM), which was developed by Red
Hat, as well as the Yellowdog Updater Modified (YUM), which was originally
developed to manage Red Hat Linux systems at Duke University's Physics
department. Another article in this series, "Learn Linux 101: Debian package
management," covers the package management tools used on Debian systems.

From a user perspective, the basic package management function is provided by

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 2 of 26

http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=ian%20shields
http://www.ibm.com/developerworks/views/global/libraryview.jsp?site_id=1&contentarea_by=global&sort_by=Date&sort_order=2&start=1&end=48&topic_by=-1&product_by=-1&type_by=All%20Types&show_abstract=true&search_by=ian%20shields
https://www.ibm.com/developerworks/mydeveloperworks/profiles/user/ishields
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-4/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-4/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

commands. As Linux developers have striven to make Linux easier to use, the basic
tools have been supplemented by other tools, including GUI tools, which hide some
of the complexities of the basic tools from the end user. In this article and in the
article on Debian package management, we focus on the basic tools, although we
mention some of the other tools so you can pursue them further.

RPM, YUM, and APT (for Debian systems) have many similarities. All can install and
remove packages. Information about installed packages is kept in a database. All
have basic command-line functionality, while additional tools can provide more
user-friendly interfaces. All can retrieve packages from the Internet.

When you install a Linux system, you typically install a large selection of packages.
The set may be customized to the intended use of the system, such as a server,
desktop, or developer workstation. And at some time you will probably need to install
new packages for added functionality, update the packages you have, or even
remove packages that you no longer need or that have been made obsolete by
newer packages. Let's look at how you do these tasks, and at some of the related
challenges such as finding which package might contain a particular command.

RPM

Red Hat introduced RPM in 1995. RPM is now the package management system
used for packaging in the Linux Standard Base (LSB). The rpm command options
are grouped into three subgroups for:

• Querying and verifying packages

• Installing, upgrading, and removing packages

• Performing miscellaneous functions

We will focus on the first two sets of command options in this article. You will find
information about the miscellaneous functions in the man pages for RPM.

We should also note that rpm is the command name for the main command used
with RPM, while .rpm is the extension used for RPM files. So "an rpm" or "the xxx
rpm" will generally refer to an RPM file, while rpm will usually refer to the command.

YUM

YUM adds automatic updates and package management, including dependency
management, to RPM systems. In addition to understanding the installed packages
on a system, YUM, like the Debian Advanced Packaging Tool (APT), works with
repositories, which are collections of packages, typically accessible over a network
connection.

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 26

http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-4/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Installing RPM packages

Suppose you want to learn Lisp, and a colleague tells you to use the gcl command.
You might try gcl --help, or you might try which gcl, or type gcl. But if your
system can't find gcl, you might see output similar to that shown in Listing 1.

Listing 1. Missing gcl command

[ian@echidna ~]$ gcl --help
bash: gcl: command not found

[ian@echidna ~]$ which gcl
/usr/bin/which: no gcl in (/usr/lib64/qt-3.3/bin:/usr/kerberos/sbin:/usr/kerber
os/bin:/usr/lib64/ccache:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/
sbin:/home/ian/bin)

[ian@echidna ~]$ type gcl
bash: type: gcl: not found

You might check back with your colleague to find out which package to install, or you
might just guess that the gcl command is in the gcl package. This is often a good
guess, but not always the right one. We'll see later how to find the right package. In
this case, you do need the gcl package. Assuming you have downloaded or
otherwise acquired a copy of the package, you might try installing it using the rpm
command with the -i (for install) option, as shown in Listing 2.

Listing 2. Installing gcl with rpm - take 1

[root@echidna ~]# rpm -i gcl-2.6.8-0.6.20090701cvs.fc12.x86_64.rpm
error: Failed dependencies:
gcl-selinux is needed by gcl-2.6.8-0.6.20090701cvs.fc12.x86_64

The rpm command knows that the package has a dependency, but unfortunately, it
won't help you resolve that dependency. You will need to get the dependent
package or packages, try again, and see if there are additional dependencies—and
keep doing this until all dependencies are satisfied. One good thing is that you can
give the rpm command a list of packages to install and it will install them all in the
right order if all dependencies are satisfied. So you at least don't have to manually
install each piece in the right order.

If you've used Debian's APT, by this time you're probably wishing you had
something like the apt-get command, which would simply go and find what you
need, including dependencies, and just install it. For RPM-based systems, YUM (or
Yellowdog Updater Modified) provides just such a function. Listing 3 shows how to
install gcl and the required gcl;-selinux prerequisite using the yum command with the
install option.

Listing 3. Installing gcl using yum

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 4 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

[root@echidna ~]# yum install gcl
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package gcl.x86_64 0:2.6.8-0.7.20100201cvs.fc12 set to be updated
--> Processing Dependency: gcl-selinux for package: gcl-2.6.8-0.7.20100201cvs.fc12.x86_64
--> Running transaction check
---> Package gcl-selinux.x86_64 0:2.6.8-0.7.20100201cvs.fc12 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
gcl x86_64 2.6.8-0.7.20100201cvs.fc12 updates 6.3 M
Installing for dependencies:
gcl-selinux x86_64 2.6.8-0.7.20100201cvs.fc12 updates 17 k

Transaction Summary
===
Install 2 Package(s)
Upgrade 0 Package(s)

Total download size: 6.4 M
Installed size: 40 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
updates/prestodelta | 964 kB 00:01
Processing delta metadata
Package(s) data still to download: 6.4 M
(1/2): gcl-2.6.8-0.7.20100201cvs.fc12.x86_64.rpm | 6.3 MB 00:12
(2/2): gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64.rpm | 17 kB 00:00

Total 398 kB/s | 6.4 MB 00:16
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64 1/2
Installing : gcl-2.6.8-0.7.20100201cvs.fc12.x86_64 2/2

Installed:
gcl.x86_64 0:2.6.8-0.7.20100201cvs.fc12

Dependency Installed:
gcl-selinux.x86_64 0:2.6.8-0.7.20100201cvs.fc12

Complete!

The output in Listing 3 shows that YUM has found the gcl.x86_64
0:2.6.8-0.7.20100201cvs.fc12 and gcl-selinux.x86_64 0:2.6.8-0.7.20100201cvs.fc12
in a repository called "updates" (more on that shortly), and determined the total
download size. After you respond "y" to agree to the transaction, it downloaded both
packages, and then installed the dependency, followed by gcl. You will learn more
about dependencies later in this article.

Package locations

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

In the previous section, you learned how to install an RPM package. But where do
the packages come from? How does yum know where to download packages from?
The starting point is the /etc/yum.repos.d/ directory, which usually contains several
repo files. This is the default location for repos, but other locations may be specified
in the YUM configuration file, normally /etc/yum.conf. Listing 4 shows the
fedora-updates.repo corresponding to the location from which we installed gcl on our
Fedora 12 system.

A typical repo file is divided into three sections, one for normal packages, one for
debug packages, and the last for source packages. Usually there will be several
copies of a distribution's packages available from different locations, or mirrors. So
the repo file tells yum where to find the latest list of mirrors for each section. Note
that the distribution release level and machine architecture are parameterized, so
yum would download the list for my x86_64 Fedora 12 system from
https://mirrors.fedoraproject.org/metalink?repo=updates-released-f12&arch=x86_64.

In addition to the repository location, the repo file tells whether a particular repository
is enabled and whether GPG signatures should be used to check the downloaded
packages.

Listing 4. /etc/apt/sources.list

[ian@echidna ~]$ cat /etc/yum.repos.d/fedora-updates.repo
[updates]
name=Fedora $releasever - $basearch - Updates
failovermethod=priority
#baseurl=http://download.fedoraproject.org/pub/fedora/linux/updates/$releasever
/$basearch/
mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=updates-released-f$r
eleasever&arch=$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

[updates-debuginfo]
name=Fedora $releasever - $basearch - Updates - Debug
failovermethod=priority
#baseurl=http://download.fedoraproject.org/pub/fedora/linux/updates/$releasever
/$basearch/debug/
mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=updates-released-deb
ug-f$releasever&arch=$basearch
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

[updates-source]
name=Fedora $releasever - Updates Source
failovermethod=priority
#baseurl=http://download.fedoraproject.org/pub/fedora/linux/updates/$releasever
/SRPMS/
mirrorlist=https://mirrors.fedoraproject.org/metalink?repo=updates-released-sou
rce-f$releasever&arch=$basearch
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

YUM and RPM use a local database to determine what packages are installed. The

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 6 of 26

https://mirrors.fedoraproject.org/metalink?repo=updates-released-f12&arch=x86_64
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

metadata about packages that is stored in the local database is retrieved from the
enabled repositories. Although you will seldom need to worry about the local
database, you use the command yum clean to clean out various parts of the locally
stored information and yum makecache to create the information in your local
database for the enabled repos. You might do this if you change your repo
configuration, for example.

Removing RPM packages

If you want to remove a package, you can use the remove option of yum, or the -e
option of rpm. A test run to remove gcl using rpm -e is shown in Listing 5. If the
package can be removed, there is no output.

Listing 5. Test removal of gcl

[root@echidna ~]# rpm -e --test gcl

Unlike the simulated removal of Debian packages using apt-get, the RPM system
does not maintain information on packages that were automatically added, so there
is no trivial way to find out which dependencies might also be removed. However, if
you specify multiple packages for removal on a single command, then packages
without dependencies will be removed before packages that have dependencies.

When you remove packages using rpm, there is no prompt before the packages are
removed, unlike when you install packages. However, if you attempt to remove a
package that is required for some other package, the operation is not performed and
you get an error message as shown in Listing 6.

Listing 6. Removing a dependent package with rpm

[root@echidna ~]# rpm -e gcl-selinux
error: Failed dependencies:

gcl-selinux is needed by (installed) gcl-2.6.8-0.7.20100201cvs.fc12.x86_64

If you use yum remove instead, then you will be prompted after the transaction
tests are performed. If the package you are trying to remove is a dependent package
for some other installed packages, then YUM will offer to remove those as well as
the dependent package, as shown in Listing 7.

Listing 7. Removing a dependent package with yum

[root@echidna ~]# yum remove gcl-selinux
Loaded plugins: presto, refresh-packagekit
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package gcl-selinux.x86_64 0:2.6.8-0.7.20100201cvs.fc12 set to be erased
--> Processing Dependency: gcl-selinux for package: gcl-2.6.8-0.7.20100201cvs.fc12.x86_64

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

--> Running transaction check
---> Package gcl.x86_64 0:2.6.8-0.7.20100201cvs.fc12 set to be erased
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Removing:
gcl-selinux x86_64 2.6.8-0.7.20100201cvs.fc12 @updates 90 k
Removing for dependencies:
gcl x86_64 2.6.8-0.7.20100201cvs.fc12 @updates 40 M

Transaction Summary
===
Remove 2 Package(s)
Reinstall 0 Package(s)
Downgrade 0 Package(s)

Is this ok [y/N]: n
Exiting on user Command
Complete!

Upgrading RPM packages

Now that you know how to install and remove an RPM, let's look at upgrading RPM
packages to a newer level. You can use yum update to update your entire system,
or you can specify a single package or a wildcard specification. Listing 8 shows how
to update all the packages whose names start with "gr". Note the use of apostrophes
to prevent shell expansion of the "*".

Listing 8. Updating using yum update

[root@echidna ~]# yum update 'gr*'
Loaded plugins: presto, refresh-packagekit
Setting up Update Process
Resolving Dependencies
--> Running transaction check
---> Package grep.x86_64 0:2.6.3-1.fc12 set to be updated
---> Package groff.x86_64 0:1.18.1.4-20.fc12 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Updating:
grep x86_64 2.6.3-1.fc12 updates 228 k
groff x86_64 1.18.1.4-20.fc12 updates 1.5 M

Transaction Summary
===
Install 0 Package(s)
Upgrade 2 Package(s)

Total download size: 1.7 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 8 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Download delta size: 854 k
http://fedora.fastsoft.net/pub/linux/fedora/linux/updates/12/x86_64/drpms/grep-2.5.3-
6.fc12_2.6.3-1.fc12.x86_64.drpm: [Errno 14] HTTP Error 404 : http://fedora.fastsoft.n
et/pub/linux/fedora/linux/updates/12/x86_64/drpms/grep-2.5.3-6.fc12_2.6.3-1.fc12.x86_
64.drpm
Trying other mirror.
(1/2): grep-2.5.3-6.fc12_2.6.3-1.fc12.x86_64.drpm | 214 kB 00:00
(2/2): groff-1.18.1.4-18.fc12_1.18.1.4-20.fc12.x86_64.drpm | 640 kB 00:00
Finishing rebuild of rpms, from deltarpms
<delta rebuild> | 1.7 MB 00:02
Presto reduced the update size by 52% (from 1.7 M to 854 k).
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Updating : grep-2.6.3-1.fc12.x86_64 1/4
Updating : groff-1.18.1.4-20.fc12.x86_64 2/4
Cleanup : grep-2.5.3-6.fc12.x86_64 3/4
Cleanup : groff-1.18.1.4-18.fc12.x86_64 4/4

Updated:
grep.x86_64 0:2.6.3-1.fc12 groff.x86_64 0:1.18.1.4-20.fc12

Complete!

If you know where the RPM files are located, or have downloaded them, you can
also update using the rpm command. This is similar to installing, except that you use
the -U or the -F option instead of the -i option. The difference between these two
options is that the -U option will upgrade an existing package or install the package
if it is not already installed, while the -F option will only upgrade or freshen a
package that is already installed. Because of this, the -U option is frequently used,
particularly when the command line contains a list of RPMs. This way, uninstalled
packages are installed, while installed packages are upgraded. Two other options,
-v (verbose) and -h (hash marks), are often used to give progress indication.
Listing 9 shows how to update the vim-common, vim-enhanced, and vim-minimal
packages using the rpm command. We have the vim-common and vim-enhanced
packages already downloaded in root's home directory, while we retrieve the
vim-minimal package from one of the update mirrors.

Listing 9. Updating packages with rpm

[root@echidna ~]# ls *.rpm
vim-common-7.2.411-1.fc12.x86_64.rpm vim-enhanced-7.2.411-1.fc12.x86_64.rpm
[root@echidna ~]# rpm -Uvh *.rpm http://mirrors.usc.edu/pub/linux/distributions\
> /fedora/linux/updates/12/x86_64/vim-minimal-7.2.411-1.fc12.x86_64.rpm
Retrieving http://mirrors.usc.edu/pub/linux/distributions/fedora/linux/updates/12/x86
_64/vim-minimal-7.2.411-1.fc12.x86_64.rpm
Preparing... ### [100%]

1:vim-common ### [33%]
2:vim-enhanced ### [67%]
3:vim-minimal ### [100%]

Querying RPM packages

In our examples you saw that installing an rpm with the rpm command requires the
full name of the package file (or URL), such as

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

gcl-2.6.8-0.6.20090701cvs.fc12.x86_64.rpm. On the other hand, installing with yum,
or removing an rpm with either command requires only the package name, such as
gcl. As with APT, RPM maintains an internal database of your installed packages,
allowing you to manipulate installed packages using the package name. In this
section, we look at some of the information that is available to you from this
database using the -q (for query) option of the rpm command, or the associated
yum queries.

The basic query simply asks if a package is installed, and, if so, what version. Add
the -i option and you get information about the package. Note that you need to
have root authority to install, upgrade, or remove packages, but non-root users can
perform queries against the rpm database.

Listing 10. Displaying information about gcl

[ian@echidna ~]$ yum list gcl
Loaded plugins: presto, refresh-packagekit
Installed Packages
gcl.x86_64 2.6.8-0.7.20100201cvs.fc12 @updates
[ian@echidna ~]$ rpm -q gcl
gcl-2.6.8-0.7.20100201cvs.fc12.x86_64

[ian@echidna ~]$ yum info gcl
Loaded plugins: presto, refresh-packagekit
Installed Packages
Name : gcl
Arch : x86_64
Version : 2.6.8
Release : 0.7.20100201cvs.fc12
Size : 40 M
Repo : installed
From repo : updates
Summary : GNU Common Lisp
URL : http://www.gnu.org/software/gcl/
License : GPL+ and LGPLv2+
Description: GCL is a Common Lisp currently compliant with the ANSI standard.

: Lisp compilation produces native code through the intermediary of
: the system's C compiler, from which GCL derives efficient
: performance and facile portability. Currently uses TCL/Tk as GUI.

[ian@echidna ~]$ rpm -qi gcl
Name : gcl Relocations: (not relocatable)
Version : 2.6.8 Vendor: Fedora Project
Release : 0.7.20100201cvs.fc12 Build Date: Tue 23 Mar 2010 03:20:36 PM EDT
Install Date: Wed 05 May 2010 01:01:34 PM EDT Build Host: x86-02.phx2.fedoraproject.
org
Group : Development/Languages Source RPM: gcl-2.6.8-0.7.20100201cvs.fc12.sr
c.rpm
Size : 41667750 License: GPL+ and LGPLv2+
Signature : RSA/8, Tue 23 Mar 2010 04:14:06 PM EDT, Key ID 9d1cc34857bbccba
Packager : Fedora Project
URL : http://www.gnu.org/software/gcl/
Summary : GNU Common Lisp
Description :
GCL is a Common Lisp currently compliant with the ANSI standard. Lisp
compilation produces native code through the intermediary of the
system's C compiler, from which GCL derives efficient performance and
facile portability. Currently uses TCL/Tk as GUI.

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 10 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The more extensive listings show you some of the tags that can be associated with
an RPM package. You will notice that rpm and yum show slightly different
information in slightly different formats. For this article, we will stick to the basic
output provided by standard command options. See the man page if you would like
to use the rpm --queryformat option to build custom query output. Try running
rpm --querytags if you want to know all the tags supported by your version of
rpm.

As shown in Listing 10, you can use yum to list installed packages. You can also use
it to list packages that have updates available, packages that are available for
installation, and packages with other characteristics, such as obsolete, or recently
added to a repository. You can even use yum to search for packages. In Listing 11,
you see that the texmacs package is not installed, but is available from the fedora
repository. If you search for "texmacs" you see four packages that mention it. You
can easily see why the TeXmacs* packages were found. Use yum info pydot to
find out why the pydot package is also mentioned.

Listing 11. Displaying information about gcl

[ian@echidna ~]$ yum list texmacs
Loaded plugins: presto, refresh-packagekit
Available Packages
TeXmacs.x86_64 1.0.7.2-2.fc12 fedora
[ian@echidna ~]$ yum search texmacs
Loaded plugins: presto, refresh-packagekit
================================= Matched: texmacs ==================================
TeXmacs-devel.i686 : Development files for TeXmacs
TeXmacs-devel.x86_64 : Development files for TeXmacs
TeXmacs.x86_64 : Structured wysiwyg scientific text editor
pydot.noarch : Python interface to Graphviz's Dot language

For the remaining query examples, we will mostly use rpm, as it has a more
extensive set of options. Many of the examples can also be done with yum, and yum
has some capabilities that are not in the basic rpm options. See the man pages to
learn more.

RPM packages and files in them

You will often want to know what is in a package or what package a particular file
came from. To list the files in the gcl package, use the -ql option as shown in
Listing 12. There are many files in this package, so we've only shown part of the
output.

Listing 12. Displaying files in the gcl package

[ian@echidna ~]$ rpm -ql gcl
/usr/bin/gcl
/usr/lib/gcl-2.6.8
/usr/lib/gcl-2.6.8/clcs
/usr/lib/gcl-2.6.8/clcs/sys-proclaim.lisp
/usr/lib/gcl-2.6.8/cmpnew

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

/usr/lib/gcl-2.6.8/cmpnew/gcl_cmpmain.lsp
/usr/lib/gcl-2.6.8/cmpnew/gcl_cmpopt.lsp
/usr/lib/gcl-2.6.8/cmpnew/gcl_collectfn.lsp
.
.
.
/usr/share/info/gcl-tk.info.gz
/usr/share/info/gcl.info-1.gz
/usr/share/info/gcl.info-2.gz
/usr/share/info/gcl.info-3.gz
/usr/share/info/gcl.info-4.gz
/usr/share/info/gcl.info-5.gz
/usr/share/info/gcl.info-6.gz
/usr/share/info/gcl.info-7.gz
/usr/share/info/gcl.info-8.gz
/usr/share/info/gcl.info-9.gz
/usr/share/info/gcl.info.gz
/usr/share/man/man1/gcl.1.gz

You can restrict the files listed to just configuration files by adding the -c option to
your query. Similarly, the -d option limits the display to just documentation files.

Querying package files

The above package query commands query the RPM database for installed
packages. If you've just downloaded a package and want the same kind of
information, you can get this using the -p option (for package file) on your query
along with specifying the package file name (as used for installing the package).
Listing 13 shows this for the two vim packages that we downloaded earlier. We run it
as root only because the files were in root's home directory. You can add other
query options, such as -l to list files or -i to list information.

Listing 13. Displaying package file information for two vim packages

[root@echidna ~]# rpm -qp *.rpm
vim-common-7.2.411-1.fc12.x86_64
vim-enhanced-7.2.411-1.fc12.x86_64

Querying all installed packages

The -a option applies your query to all installed packages. This can generate a lot of
output, so you will usually use it in conjunction with one or more filters, such as sort
to sort the listing, more or less to page through it, wc to obtain package or file
counts, or grep to search for packages if you aren't sure of the name. Listing 14
shows the following queries:

1. A sorted list of all packages on the system

2. A count of all packages on the system

3. A count of all files in all packages on the system

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 12 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

4. A count of all documentation files installed with RPMs

5. A search for all packages with "gcl" (case-insensitive) as part of their
name

Listing 14. Queries against all packages

[ian@echidna ~]$ rpm -qa | sort | more
aalib-libs-1.4.0-0.18.rc5.fc12.x86_64
abrt-1.0.8-2.fc12.x86_64
abrt-addon-ccpp-1.0.8-2.fc12.x86_64
abrt-addon-kerneloops-1.0.8-2.fc12.x86_64
abrt-addon-python-1.0.8-2.fc12.x86_64
abrt-desktop-1.0.8-2.fc12.x86_64
abrt-gui-1.0.8-2.fc12.x86_64
abrt-libs-1.0.8-2.fc12.x86_64
abrt-plugin-bugzilla-1.0.8-2.fc12.x86_64
abrt-plugin-logger-1.0.8-2.fc12.x86_64
abrt-plugin-runapp-1.0.8-2.fc12.x86_64
abyssinica-fonts-1.0-5.fc12.noarch
acl-2.2.49-2.fc12.x86_64
...
[ian@echidna ~]$ rpm -qa | wc -l
1792
[ian@echidna ~]$ rpm -qal | wc -l
281052
[ian@echidna ~]$ rpm -qad | wc -l
45686
[ian@echidna ~]$ rpm -qa | grep -i gcl
gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64
gcl-2.6.8-0.7.20100201cvs.fc12.x86_64

Using rpm -qa can ease the administration of multiple systems. If you redirect the
sorted output to a file on one machine, and then do the same on the other machine,
you can use the diff program to find differences.

Which package owns a file?

Given that you can list all packages and all files in a package, you now have all the
information you need to find which package owns a file. However, the rpm command
provides a -f (or --file) option to help you locate the package that owns a file.
Suppose you want to know which of the vim packages we saw earlier actually
provides the vim command. You will need to full path to the file. Listing 15 shows
how to use the which command to get the full path to the vim command, and a
handy tip for using this output as input to the rpm -qf command. Note that the tick
marks surrounding `which guile-config` are back-ticks. Another way of using
this in the Bash shell is to use $(which vim).

Listing 15. Which package supplies the vim executable

[ian@echidna ~]$ which vim
/usr/bin/vim
[ian@echidna ~]$ rpm -qf `which vim`

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

vim-enhanced-7.2.411-1.fc12.x86_64
[ian@echidna ~]$ rpm -qf $(which vim)
vim-enhanced-7.2.411-1.fc12.x86_64

RPM dependencies

You saw earlier that our attempt to erase the gcl-selinux package failed because of
dependencies. In addition to files, an RPM package may contain arbitrary
capabilities that other packages may depend on.

As you have seen, this usually works out fine. If you need to install several packages
at once, some of which may depend on others, simply use yum, or give the whole list
to your rpm -Uvh command, and it will analyze the dependencies and perform the
installs in the right order.

Besides trying to install or erase a package and getting an error message, there are
ways to find out what files or capabilities a package requires or depends on.

The rpm command provides an option to interrogate installed packages or package
files to find out what capabilities they depend on or require.This is the --requires
option, which may be abbreviated to -R. Listing 16 shows the capabilities required
by gcl. Add the -p option and use the full RPM file name if you want to query the
package file instead of the RPM database.

Listing 16. What does gcl require

[ian@echidna ~]$ rpm -qR gcl
/bin/sh
/bin/sh
/bin/sh
/sbin/install-info
/sbin/install-info
gcl-selinux
libX11.so.6()(64bit)
libc.so.6()(64bit)
libc.so.6(GLIBC_2.11)(64bit)
libc.so.6(GLIBC_2.2.5)(64bit)
libc.so.6(GLIBC_2.3)(64bit)
libc.so.6(GLIBC_2.3.4)(64bit)
libc.so.6(GLIBC_2.4)(64bit)
libc.so.6(GLIBC_2.7)(64bit)
libc.so.6(GLIBC_2.8)(64bit)
libdl.so.2()(64bit)
libgmp.so.3()(64bit)
libm.so.6()(64bit)
libm.so.6(GLIBC_2.2.5)(64bit)
libreadline.so.6()(64bit)
libtcl8.5.so()(64bit)
libtk8.5.so()(64bit)
libz.so.1()(64bit)
rpmlib(CompressedFileNames) <= 3.0.4-1
rpmlib(FileDigests) <= 4.6.0-1
rpmlib(PayloadFilesHavePrefix) <= 4.0-1
rtld(GNU_HASH)
rpmlib(PayloadIsXz) <= 5.2-1

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 14 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

It can be somewhat tricky to match capabilities to the packages that provide them.
The yum command with the deplist option can help here. If you just give a
package name that is not qualified by version, you may get a listing for other known
versions. Listing 17 shows how to get the dependency list for just the version of gcl
that is installed.

Listing 17. Using yum deplist to find what gcl requires

[ian@echidna ~]$ yum deplist $(rpm -q gcl)
Loaded plugins: presto, refresh-packagekit
Finding dependencies:
package: gcl.x86_64 2.6.8-0.7.20100201cvs.fc12
dependency: libc.so.6(GLIBC_2.3.4)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: gcl-selinux
provider: gcl-selinux.x86_64 2.6.8-0.6.20090701cvs.fc12
provider: gcl-selinux.x86_64 2.6.8-0.7.20100201cvs.fc12

dependency: libgmp.so.3()(64bit)
provider: gmp.x86_64 4.3.1-5.fc12

dependency: libc.so.6(GLIBC_2.8)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libc.so.6(GLIBC_2.4)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libc.so.6()(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: /sbin/install-info
provider: info.x86_64 4.13a-7.fc12
provider: info.x86_64 4.13a-9.fc12

dependency: libX11.so.6()(64bit)
provider: libX11.x86_64 1.3-1.fc12

dependency: libc.so.6(GLIBC_2.7)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libtcl8.5.so()(64bit)
provider: tcl.x86_64 1:8.5.7-4.fc12
provider: tcl.x86_64 1:8.5.7-5.fc12

dependency: libc.so.6(GLIBC_2.11)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libtk8.5.so()(64bit)
provider: tk.x86_64 1:8.5.7-2.fc12
provider: tk.x86_64 1:8.5.7-3.fc12

dependency: libc.so.6(GLIBC_2.3)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libm.so.6()(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libz.so.1()(64bit)
provider: zlib.x86_64 1.2.3-23.fc12

dependency: rtld(GNU_HASH)
provider: glibc.i686 2.11-2
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6
provider: glibc.i686 2.11.1-6

dependency: libdl.so.2()(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libreadline.so.6()(64bit)
provider: readline.x86_64 6.0-3.fc12

dependency: /bin/sh

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

provider: bash.x86_64 4.0.33-1.fc12
provider: bash.x86_64 4.0.35-3.fc12

dependency: libc.so.6(GLIBC_2.2.5)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

dependency: libm.so.6(GLIBC_2.2.5)(64bit)
provider: glibc.x86_64 2.11-2
provider: glibc.x86_64 2.11.1-6

This list also shows possible providers for each capability. You can see that most
dependencies could be provided by more than one alternative level of a package.
For example, /bin/sh could come from either of two levels of bash. With a little
creative filtering, you can reduce this output to a list of package names as shown in
Listing 18.

Listing 18. Reducing the yum deplist output to just list package names

[ian@echidna ~]$ yum deplist $(rpm -q gcl) | grep "provider:" | \
> awk '{ print $2 }'|sort|uniq
bash.x86_64
gcl-selinux.x86_64
glibc.i686
glibc.x86_64
gmp.x86_64
info.x86_64
libX11.x86_64
readline.x86_64
tcl.x86_64
tk.x86_64
zlib.x86_64

If you just need to know what packages need to be installed, you can always run
yum install and see the list before you are prompted to accept the installation
proposal.

In addition to finding out what capabilities a package requires, you may need to find
what package provides some capability. You saw above how to find which package
owns a file. Listing 19 shows how to use rpm or yum to find what package provides
the gcl-selinux(x86-64) capability. In addition to information about installed packages
providing the capability, YUM also shows the packages or versions available in
repositories. These are the original 2.6.8-0.6 version from the fedora repository and
the updated 2.6.8-0.7 version available from the updates repository.

Listing 19. What packages provide gcl-selinux(x86-64) capability

[ian@echidna ~]$ rpm -q --whatprovides 'gcl-selinux(x86-64)'
gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64
[ian@echidna ~]$ yum whatprovides 'gcl-selinux(x86-64)'
Loaded plugins: presto, refresh-packagekit
gcl-selinux-2.6.8-0.6.20090701cvs.fc12.x86_64 : SELinux policy for GCL images
Repo : fedora
Matched from:
Other : gcl-selinux(x86-64)

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 16 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64 : SELinux policy for GCL images
Repo : updates
Matched from:
Other : gcl-selinux(x86-64)

gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64 : SELinux policy for GCL images
Repo : installed
Matched from:
Other : Provides-match: gcl-selinux(x86-64)

RPM package file integrity

To ensure their integrity, RPM packages include a digest, such as MD5 or SHA1,
and are usually digitally signed. Packages that are digitally signed need a public key
for verification. To check the integrity of an RPM package file, use the --checksig
(abbreviated to -K) option of rpm. You will usually find it useful to add the -v option
for more verbose output. Listing 20 shows an example for the vim-enhanced RPM.

Listing 20. Checking the integrity of the vim-enhanced package file

[root@echidna ~]# rpm -vK vim-enhanced-7.2.411-1.fc12.x86_64.rpm
vim-enhanced-7.2.411-1.fc12.x86_64.rpm:

Header V3 RSA/SHA256 signature: OK, key ID 57bbccba
Header SHA1 digest: OK (f9a199545a515f7ff0716729768b41eb68fe29a8)
V3 RSA/SHA256 signature: OK, key ID 57bbccba
MD5 digest: OK (d4045f1f72d48073e3f401ee9d1f71cf)

You may get an output line like:

V3 DSA signature: NOKEY, key ID 16a61572

This means that you have a signed package, but you do not have the needed public
key in your RPM database. Note that earlier versions of RPM may present the
verification differently.

If a package is signed and you want to verify it against a signature, then you will
need to locate the appropriate signature file and import it into your RPM database.
You should first download the key and then check its fingerprint before importing it
using the rpm --import command. For more information, see the RPM man
pages. You will also find more information on signed binaries at the RPM home page
(see Resources for a link).

Verifying an installed package

Like checking the integrity of an rpm, you can also check the integrity of your
installed files using rpm -V. This step makes sure that the files haven't been

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 17 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

modified since they were installed from the rpm. As shown in Listing 21, there is no
output from this command if the package is still good, but you can add the -v option
to get much more detailed output.

Listing 21. Verifying the installed vim-common package

[ian@echidna ~]$ rpm -V vim-common

Let's become root and corrupt our vim-common installation by deleting /usr/bin/xxd
and replacing /usr/share/vim/vim72/syntax/bindzone.vim /bin/bash. Let's try the
verification again. The results are shown in Listing 22.

Listing 22. Tampering with the vim-common package

[root@echidna ~]# rpm -qf /usr/bin/xxd /usr/share/vim/vim72/syntax/bindzone.vim
vim-common-7.2.411-1.fc12.x86_64
vim-common-7.2.411-1.fc12.x86_64
[root@echidna ~]# rm /usr/bin/xxd
rm: remove regular file `/usr/bin/xxd'? y
[root@echidna ~]# cp /bin/bash /usr/share/vim/vim72/syntax/bindzone.vim
cp: overwrite `/usr/share/vim/vim72/syntax/bindzone.vim'? y
[root@echidna ~]# rpm -V vim-common
missing /usr/bin/xxd
S.5....T. /usr/share/vim/vim72/syntax/bindzone.vim

This output shows us that the /usr/share/vim/vim72/syntax/bindzone.vim file fails
MD5 sum, file size, and mtime tests. One way to solve the problem would be to
remove the package and then reinstall it, but there are other packages that depend
on vim-common and that are installed and still OK. The solution is to forcibly reinstall
it using the --force option of rpm, or the reinstall function of yum. Listing 23
shows how to reinstall with yum, and then verify that the package is now OK and the
deleted file has been restored.

Listing 23. Reinstalling the vim-common package

[root@echidna ~]# yum reinstall vim-common
Loaded plugins: presto, refresh-packagekit
Setting up Reinstall Process
Resolving Dependencies
--> Running transaction check
---> Package vim-common.x86_64 2:7.2.411-1.fc12 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Reinstalling:
vim-common x86_64 2:7.2.411-1.fc12 updates 6.0 M

Transaction Summary
===

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 18 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Remove 0 Package(s)
Reinstall 1 Package(s)
Downgrade 0 Package(s)

Total download size: 6.0 M
Installed size: 17 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
updates/prestodelta | 969 kB 00:00
Processing delta metadata
Package(s) data still to download: 6.0 M
vim-common-7.2.411-1.fc12.x86_64.rpm | 6.0 MB 00:01
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Warning: RPMDB altered outside of yum.
Installing : 2:vim-common-7.2.411-1.fc12.x86_64 1/1

Installed:
vim-common.x86_64 2:7.2.411-1.fc12

Complete!
[root@echidna ~]# rpm -V vim-common
[root@echidna ~]# ls /usr/bin/xxd
/usr/bin/xxd

If you need more force

Usually the package management system keeps your packages in order. However,
if you manage to delete some file that is an important part of a package—and
reinstalling the package without removing does not fix the problem—then you may
need to remove the package before reinstalling. For such a case, you probably want
to delete the existing copy and reinstall it, without needing to uninstall and reinstall
all the packages that depend on it. For this, you can use the rpm command's
--nodeps option to bypass dependency checking when you remove a package.
Listing 24 shows how this might work if you accidentally removed the /usr/bin/xxd
file, which is part of the vim-common package, as we did earlier.

Listing 24. Updating packages with rpm

[root@echidna ~]# rm /usr/bin/xxd
rm: remove regular file `/usr/bin/xxd'? y
[root@echidna ~]# # Oops! we needed that file
[root@echidna ~]# rpm -Fvh vim-common-7.2.411-1.fc12.x86_64.rpm
[root@echidna ~]# ls /usr/bin/xxd
ls: cannot access /usr/bin/xxd: No such file or directory
[root@echidna ~]# # Oh! Freshening the package didn't replace the missing file
[root@echidna ~]# rpm -e vim-common
error: Failed dependencies:

vim-common = 2:7.2.411-1.fc12 is needed by (installed) vim-enhanced-2:7.2.411-1.f
c12.x86_64
[root@echidna ~]# # Can't remove vim-common because vim-enhanced needs it
[root@echidna ~]# rpm -e --nodeps vim-common
[root@echidna ~]# # Bypassing the dependency check allowed removal
[root@echidna ~]# rpm -Uvh vim-common-7.2.411-1.fc12.x86_64.rpm
Preparing... ### [100%]

1:vim-common ### [100%]
[root@echidna ~]# # Update (or install) vim-common again
[root@echidna ~]# ls /usr/bin/xxd

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 19 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

/usr/bin/xxd
[root@echidna ~]# # And /usr/bin/xxd is back

So now you have some approaches to updating or repairing if accidents happen and
the ordinary update process fails. Note that you can also bypass dependency
checking when installing an RPM, but this not usually a good idea.

Downloading RPMs from repositories

Although yum will automatically retrieve packages from repositories, you may want
to download RPMs and save them, perhaps to install them on a non-networked
system, or to examine their contents, or for some other reason. You can use the
yumdownloader command as shown in Listing 25. In our case, the package is
already installed, so there are no additional packages to download. If there were
such packages, the --resolve option would cause them to be downloaded too.

Listing 25. Downloading the gcl package

[ian@echidna ~]$ yumdownloader --resolve gcl
Loaded plugins: presto, refresh-packagekit
adobe-linux-i386 17/17
--> Running transaction check
---> Package gcl.x86_64 0:2.6.8-0.7.20100201cvs.fc12 set to be updated
--> Finished Dependency Resolution
gcl-2.6.8-0.7.20100201cvs.fc12.x86_64.rpm | 6.3 MB 00:01

Using rpm2cpio

If you download an RPM and need to examine its contents, rather than install it, you
can use the rpm2cpiocommand to convert the contents to a cpio archive and then
filter that through the cpio command to extract individual files or all the files in the
package. Listing 26 shows how to do this for the gcl-selinux package and then
shows what files (and directories) were unpacked. See the man pages for
rpm2cpio and cpio for additional details on these commands.

Listing 26. Unpacking the gcl-selinux package with rpm2cpio

[ian@echidna ~]$ yumdownloader gcl-selinux
Loaded plugins: presto, refresh-packagekit
gcl-selinux-2.6.8-0.7.20100201cvs.fc12.x86_64.rpm | 17 kB 00:00
[ian@echidna ~]$ mkdir gcl-selinux
[ian@echidna ~]$ cd gcl-selinux
[ian@echidna gcl-selinux]$ rpm2cpio ../gcl-selinux*.rpm | cpio -idv
./usr/share/selinux/packages/gcl
./usr/share/selinux/packages/gcl/gcl.pp
182 blocks
[ian@echidna gcl-selinux]$ find .
.
./usr
./usr/share
./usr/share/selinux

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 20 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

./usr/share/selinux/packages

./usr/share/selinux/packages/gcl

./usr/share/selinux/packages/gcl/gcl.pp

Finding RPMs

We saw earlier that YUM offers a search capability, which searches descriptions as
well as package names. If you need to find what package contains a program that
you do not have installed, there are a few other ways:

• You can guess what package might contain it and download the package
without installing. Once you have the package, you can interrogate it.

• You can search the Internet.

• You may be able to use the command-not-found capability described
below.

If you can't find a particular RPM through your system tools, a good Internet
resource for locating RPMs is the Rpmfind.Net server (see Resources for a link).

Command not found

When the Bash shell searches for a command and does not find it, then the shell
searches for a shell function named command_not_found_handle. If the
command_not_found_handle function exists, it is invoked with the original
command and original arguments as its arguments, and the function's exit status
becomes the exit status of the shell. If the function is not defined, the shell prints an
error message and returns an exit status of 127. The function is usually set in the
system /etc/bash.bashrc file. Listing 27 shows how we searched for the
command-not-found capability and then installed it.

Listing 27. Locating and installing the command-not-found capability

[root@echidna ~]# yum search command-not-found
Loaded plugins: presto, refresh-packagekit
========================== Matched: command-not-found ==========================
PackageKit-command-not-found.x86_64 : Ask the user to install command line

: programs automatically
You have new mail in /var/spool/mail/root
[root@echidna ~]# yum install PackageKit-command-not-found.x86_64
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package PackageKit-command-not-found.x86_64 0:0.5.7-2.fc12 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 21 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Installing:
PackageKit-command-not-found x86_64 0.5.7-2.fc12 updates 102 k

Transaction Summary
==
Install 1 Package(s)
Upgrade 0 Package(s)

Total download size: 102 k
Installed size: 262 k
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 102 k
PackageKit-command-not-found-0.5.7-2.fc12.x86_64.rpm | 102 kB 00:00
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : PackageKit-command-not-found-0.5.7-2.fc12.x86_64 1/1

Installed:
PackageKit-command-not-found.x86_64 0:0.5.7-2.fc12

Complete!

Listing 28 shows how the function handle is defined after installing
PackageKit-command-not-found. If the function cannot perform the search, then it
mimics the standard system behavior and returns 127.

Listing 28. The command_not_found_handle

[ian@echidna ~]$ type command_not_found_handle
command_not_found_handle is a function
command_not_found_handle ()
{

runcnf=1;
retval=127;
[! -S /var/run/dbus/system_bus_socket] && runcnf=0;
[! -x /usr/sbin/packagekitd] && runcnf=0;
if [$runcnf -eq 1]; then

/usr/libexec/pk-command-not-found $1;
retval=$?;

else
echo "bash: $1: command not found";

fi;
return $retval

}

If this had been installed before we running gcl as we did back in Listing 1, you might
have seen something like Listing 29.

Listing 29. Attempting gcl with a command_not_found_handle

[ian@echidna ~]$ gcl
Command not found. Install package 'gcl' to provide command 'gcl'? [N/y]

Other tools

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 22 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

In addition to yum and rpm, your distributor may provide other tools for installing
packages from the repository or updating your entire system. These tools may be
graphical or command line or both. Some examples include:

• YaST (SUSE)

• up2date (Red Hat)

• Mandrake Software Management (Mandriva)

Usually these tools will handle multiple package updates in an automatic or
semi-automatic fashion. They may also provide capabilities to display contents of
repositories or search for packages. Consult the documentation for your distribution
for more details.

PackageKit

No discussion of package installation would be complete without mentioning
PackageKit, which is a system designed to make installing and updating software
easier. The intent is to unify all the software graphical tools used in different
distributions. PackageKit uses a system activated daemon, which means that the
daemon is activated only when needed. Packagekit has version for Gnome
(gnome-packagekit) and KDE KPackageKit). The command-not-found handle
described above is also part of PackageKit. It includes the commands pkcon to
perform package management functions from the console, and pkmon to monitor
package kit activity. It also includes graphical tools for adding software packages, or
for updating your system. Figure 1 shows an example of the Software Update
graphical interface.

Figure 1. Software Update graphical interface on Fedora 12 (Gnome)

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 23 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

There is a lot more to the RPM and YUM package management systems than
covered here. See Resources for additional links.

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 24 of 26

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Use the developerWorks roadmap for LPIC-1 to find the developerWorks
articles to help you study for LPIC-1 certification based on the April 2009
objectives.

• At the LPIC Program site, find detailed objectives, task lists, and sample
questions for the three levels of the Linux Professional Institute's Linux system
administration certification. In particular, see their April 2009 objectives for LPI
exam 101 and LPI exam 102. Always refer to the LPIC Program site for the
latest objectives.

• Review the entire LPI exam prep series on developerWorks to learn Linux
fundamentals and prepare for system administrator certification based on earlier
LPI exam objectives prior to April 2009.

• At the RPM home page find current information on the RPM software packaging
tool and pointers to more information on RPM.

• The book Maximum RPM offers a comprehensive and systematic treatment of
all aspects of RPM. It's available in both hard and soft copy formats.

• At the LSB Home, learn about the Linux Standard Base (LSB), a Free
Standards Group (FSG) project to develop a standard binary operating
environment.

• See the PackageKit home page to learn more about PackageKit.

• The Linux Documentation Project has a variety of useful documents, especially
its HOWTOs.

• In the developerWorks Linux zone, find hundreds of how-to articles and
tutorials, as well as downloads, discussion forums, and a wealth other
resources for Linux developers and administrators.

• Stay current with developerWorks technical events and webcasts focused on a
variety of IBM products and IT industry topics.

• Attend a free developerWorks Live! briefing to get up-to-speed quickly on IBM
products and tools as well as IT industry trends.

• Watch developerWorks on-demand demos ranging from product installation and
setup demos for beginners, to advanced functionality for experienced
developers.

• Follow developerWorks on Twitter, or subscribe to a feed of Linux tweets on
developerWorks.

Get products and technologies

ibm.com/developerWorks developerWorks®

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 25 of 26

http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-map/
http://www.lpi.org/eng/certification/the_lpic_program
http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_101_detailed_objectives
http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_101_detailed_objectives
http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_102_detailed_objectives
http://www.ibm.com/developerworks/linux/lpi/index.html
http://www.rpm.org/
http://www.rpm.org/max-rpm/
http://www.linuxbase.org/
http://www.packagekit.org/
http://www.tldp.org/
http://www.ibm.com/developerworks/linux/index.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp
http://www.ibm.com/developerworks/offers/techbriefings/events.html
http://www.ibm.com/developerworks/offers/techbriefings/index.html
http://www.ibm.com/developerworks/offers/lp/demos/index.html
http://www.twitter.com/developerworks/
http://search.twitter.com/search?q=%23linux+from%3Adeveloperworks+-RT+
http://search.twitter.com/search?q=%23linux+from%3Adeveloperworks+-RT+
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Find packages on one of your distribution's mirrors, such as Fedora/12 Public
Active Mirrors.

• Search for RPMs for your distribution at Rpmfind.Net and RPM Search.

• Evaluate IBM products in the way that suits you best: Download a product trial,
try a product online, use a product in a cloud environment, or spend a few hours
in the SOA Sandbox learning how to implement Service Oriented Architecture
efficiently.

Discuss

• Participate in the discussion forum for this content.

• Get involved in the My developerWorks community. Connect with other
developerWorks users while exploring the developer-driven blogs, forums,
groups, and wikis.

About the author

Ian Shields
Ian Shields works on a multitude of Linux projects for the
developerWorks Linux zone. He is a Senior Programmer at IBM at the
Research Triangle Park, NC. He joined IBM in Canberra, Australia, as a
Systems Engineer in 1973, and has since worked on communications
systems and pervasive computing in Montreal, Canada, and RTP, NC.
He has several patents. His undergraduate degree is in pure
mathematics and philosophy from the Australian National University. He
has an M.S. and Ph.D. in computer science from North Carolina State
University.

developerWorks® ibm.com/developerWorks

RPM and YUM package management Trademarks
© Copyright IBM Corporation 2010. All rights reserved. Page 26 of 26

http://mirrors.fedoraproject.org/publiclist/Fedora/12/
http://mirrors.fedoraproject.org/publiclist/Fedora/12/
http://rpmfind.net/
http://rpm.pbone.net/
http://www.ibm.com/developerworks/downloads/index.html
http://www.ibm.com/developerworks/downloads/soasandbox/index.html
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Overview
	Introducing package management
	Installing RPM packages
	Package locations
	Removing RPM packages
	Upgrading RPM packages
	Querying RPM packages
	RPM package file integrity
	Verifying an installed package
	Downloading RPMs from repositories
	Using rpm2cpio
	Finding RPMs
	Other tools
	PackageKit
	Resources
	About the author

